IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)

Livres en français

14 livres et 20 critiques, dernière mise à jour le 7 mai 2021 , note moyenne : 4.1

  1. Apprentissage artificiel - Concepts et algorithmes : de Bayes et Hume au Deep Learning
  2. Data science - Cours et exercices
  3. Apprentissage artificiel - Deep learning, concepts et algorithmes
  4. Deep Learning avec TensorFlow - Mise en oeuvre et cas concrets
  5. Machine Learning avec Scikit-Learn - Mise en oeuvre et cas concrets
  6. Big Data et Machine Learning - Les concepts et les outils de la data science
  7. Data Scientist et langage R - Guide d'autoformation à l'exploitation des Big Data
  8. Recherche d'information - Applications, modèles et algorithmes — data mining, décisionnel et big data
  9. Apprentissage machine - De la théorie à la pratique - Concepts fondamentaux en Machine Learning
  10. Recherche d'information - Applications, modèles et algorithmes
  11. Apprentissage artificiel - Concepts et algorithmes
  12. Réseaux de neurones - Méthodologie et applications
  13. Réseaux bayesiens
  14. Apprentissage statistique - Réseaux de neurones - Cartes topologiques - Machines à vecteurs supports
couverture du livre Apprentissage artificiel

Note 4.5 drapeau
Détails du livre
Sommaire
Critiques (1)
0 commentaire
 
 

Apprentissage artificiel

Concepts et algorithmes : de Bayes et Hume au Deep Learning

de
Public visé : Intermédiaire

Résumé de l'éditeur

Les programmes d'intelligence artificielle sont aujourd'hui capables de reconnaître des commandes vocales, d'analyser automatiquement des photos satellites, d'assister des experts pour prendre des décisions dans des environnements complexes et évolutifs (analyse de marchés financiers, diagnostics médicaux...), de fouiller d'immenses bases de données hétérogènes, telles les innombrables pages du Web...

Pour réaliser ces tâches, ils sont dotés de modules d'apprentissage leur permettant d'adapter leur comportement à des situations jamais rencontrées, ou d'extraire des lois à partir de bases de données d'exemples. Ce livre présente les concepts qui sous-tendent l'apprentissage artificiel, les algorithmes qui en découlent et certaines de leurs applications. Son objectif est de décrire un ensemble d'algorithmes utiles en tentant d'établir un cadre théorique pour l'ensemble des techniques regroupées sous ce terme « d'apprentissage artificiel ». La quatrième édition de ce livre a été augmentée et complètement réorganisée pour s'adapter aux évolutions très significatives de l'apprentissage artificiel ces dernières années. Une large place y est accordée aux techniques d'apprentissage profond et à de nouvelles applications, incluant le traitement de flux de données.

A qui s'adresse ce livre ?

Ce livre s'adresse tant aux décideurs et aux ingénieurs qui souhaitent mettre au point des applications qu'aux étudiants de niveau Master 1 et 2 et en école d'ingénieurs, qui souhaitent un ouvrage de référence sur ce domaine clé de l'intelligence artificielle.

Édition : Eyrolles - 990 pages, 4e édition, 25 mars 2021

ISBN10 : 2416001043 - ISBN13 : 9782416001048

Commandez sur www.amazon.fr :

56.00 € TTC (prix éditeur 56.00 € TTC)
Des machines apprenantes !
L'induction exploitant la structure de l'espace des hypothèses
L'induction par optimisation d'un critère inductif
L'induction par comparaison à des exemples (et par collaboration)
L'apprentissage descriptif
Apprentissage en environnement et non stationnaire
Aspects pratiques et suppléments
Annexes et bibliographie
Critique du livre par la rédaction Thibaut Cuvelier le 7 mai 2021
À l'achat, ce livre se dénote par son poids, son nombre de pages. Que peut-il donc contenir de plus que la concurrence ? Le lecteur intéressé regardera ensuite la table des matières et verra que les sujets abordés sont plus étendus : les auteurs ne se focalisent pas sur l'apprentissage automatique, mais visent plus large, toutes les techniques qui permettent à un ordinateur d'extraire des connaissances depuis un jeu de données. C'est là le grand avantage de cet ouvrage, il cherche à donner une vue d'ensemble aussi diversifiée que possible sur un domaine d'étude loin d'être jeune. À la lecture, ce pressentiment se confirme : c'est complet, si ce n'est exhaustif ; c'est une référence (et le texte est prévu comme tel : aucun ordre n'est imposé sur la lecture des chapitres).

La rédaction diffère également de la concurrence, le point de vue adopté étant plus basé sur la théorie que la pratique (bien que les auteurs abordent le cycle de vie d'un projet de science des données). Les titres des chapitres ne révèlent pleinement leur cohérence qu'à la lecture. C'est là un parti pris : plus de théorie que de pratique. Cette structuration mène également à des points plus étonnants, comme le fait que la question de l'évaluation d'un apprentissage est traitée d'abord pour l'apprentissage non supervisé, puis (bien) après pour l'apprentissage supervisé plus classique. Également, le texte fourmille de références vers des articles plus académiques encore, pour creuser plus avant si le cœur vous en dit.

Un point négatif (par rapport au public visé : « décideurs et […] ingénieurs […, ainsi] qu'aux étudiants de niveau Master 1 et 2 et en école d'ingénieurs ») est justement le côté théorique de toutes choses, le formalisme mathématique poussé à un très bon niveau. Les auteurs se veulent formels, et ce, dès l'introduction. Cela rend malheureusement l'ouvrage assez peu accessible, voire complètement imperméable pour les allergiques des mathématiques. Pourtant, lors de la majorité des chapitres, on se rend compte de l'effort fourni pour éviter l'abus d'anglicismes (moins pour le nouveau contenu, malheureusement). Le sous-titre présente le mot clé « deep learning », mais celui-ci n'est pas glorifié, comme d'autres ouvrages du domaine.

Cette quatrième édition est augmentée, avec quatre chapitres entièrement nouveaux, dont l'un très pratique sur la conduite de projet. Ce nouveau contenu permet d'aborder de nouvelles pistes de recherche à la pointe du domaine (apprentissage semi-supervisé ou avec peu d'exemples). Comme un bon vin, on peut dire que le livre bonifie avec les éditions.

Par conséquent, l'ouvrage semble plutôt prédestiné à ceux qui veulent une compréhension profonde de la théorie derrière l'apprentissage, de ses liens avec les algorithmes. Il pèche sur les questions plus pratiques. Il n'y a donc pas beaucoup de souci à se faire pour la péremption des informations, qui resteront valables des années, si ce n'est dizaines d'années pour la plupart. Le public visé est plutôt mathématicien ou chercheur dans le domaine : il faut avoir déjà des connaissances préalables en apprentissage pour tirer un maximum du livre.




 Commenter Signaler un problème

Avatar de dourouc05 dourouc05 - Responsable Qt & Livres https://www.developpez.com
le 07/05/2021 à 2:11
Apprentissage artificiel
Concepts et algorithmes : de Bayes et Hume au Deep Learning
Les programmes d'intelligence artificielle sont aujourd'hui capables de reconnaître des commandes vocales, d'analyser automatiquement des photos satellites, d'assister des experts pour prendre des décisions dans des environnements complexes et évolutifs (analyse de marchés financiers, diagnostics médicaux...), de fouiller d'immenses bases de données hétérogènes, telles les innombrables pages du Web...

Pour réaliser ces tâches, ils sont dotés de modules d'apprentissage leur permettant d'adapter leur comportement à des situations jamais rencontrées, ou d'extraire des lois à partir de bases de données d'exemples. Ce livre présente les concepts qui sous-tendent l'apprentissage artificiel, les algorithmes qui en découlent et certaines de leurs applications. Son objectif est de décrire un ensemble d'algorithmes utiles en tentant d'établir un cadre théorique pour l'ensemble des techniques regroupées sous ce terme « d'apprentissage artificiel ». La quatrième édition de ce livre a été augmentée et complètement réorganisée pour s'adapter aux évolutions très significatives de l'apprentissage artificiel ces dernières années. Une large place y est accordée aux techniques d'apprentissage profond et à de nouvelles applications, incluant le traitement de flux de données.

A qui s'adresse ce livre ?

Ce livre s'adresse tant aux décideurs et aux ingénieurs qui souhaitent mettre au point des applications qu'aux étudiants de niveau Master 1 et 2 et en école d'ingénieurs, qui souhaitent un ouvrage de référence sur ce domaine clé de l'intelligence artificielle.

[Lire la suite]




 
couverture du livre Data science

Note 3.5 drapeau
Détails du livre
Sommaire
Critiques (1)
0 commentaire
 
 

Data science

Cours et exercices

de
Public visé : Intermédiaire

Résumé de l'éditeur

Un ouvrage de référence sur les data sciences !

La data science, ou science des données, est la discipline qui traite de la collecte, de la préparation, de la gestion, de l'analyse, de l'interprétation et de la visualisation de grands ensembles de données complexes. Elle n'est pas seulement concernée par les outils et les méthodes pour obtenir, gérer et analyser les données ; elle consiste aussi à en extraire de la valeur et de la connaissance.

Cet ouvrage présente les fondements scientifiques et les composantes essentielles de la science des données, à un niveau accessible aux étudiants de master et aux élèves ingénieurs. Notre souci a été de proposer un exposé cohérent reliant la théorie aux algorithmes développés dans ces domaines. Il s'adresse aux chercheurs et ingénieurs qui abordent les problématiques liées à la science des données, aux data scientists de PME qui utilisent en profondeur les outils d'apprentissage, mais aussi aux étudiants de master, doctorants ou encore futurs ingénieurs qui souhaitent un ouvrage de référence en data science.

A qui s'adresse ce livre ?

  • Aux développeurs, statisticiens, étudiants et chefs de projets ayant à résoudre des problèmes de data science.
  • Aux data scientists, mais aussi à toute personne curieuse d'avoir une vue d'ensemble de l'état de l'art du machine learning.

Édition : Eyrolles - 272 pages, 1re édition, 16 août 2018

ISBN10 : 2212674104 - ISBN13 : 9782212674101

Commandez sur www.amazon.fr :

32.00 € TTC (prix éditeur 32.00 € TTC)
  • Introduction
  • Prétraitement des données
  • Gestion de données large-échelle et systèmes distribués
  • Calcul haute performance
  • Optimisation pour l'analyse de données
  • Décomposition matricielle/tensorielle
  • Modèles génératifs
  • Modèles discriminants
  • Deep learning
  • Visualisation interactive d'information
Critique du livre par la rédaction Thibaut Cuvelier le 15 octobre 2018
Ce petit livre se dénote de la concurrence par son focus sur les bases de la science des données : pas uniquement les algorithmes d'apprentissage ou d'extraction de connaissances. En effet, il traite aussi de la représentation des données, chose importante en début de projet. Globalement, les chapitres sont organisés comme le serait un projet en science des données. Le lecteur commence son parcours avec les données, puis passe aux techniques d'implémentation (c'est-à-dire le calcul distribué, l'optimisation, les méthodes numériques), finalement aux algorithmes proprement dits.

Tous ces sujets sont abordés de manière assez brève (le livre ne fait même pas trois cents pages) et concise, en insistant juste sur les éléments principaux. Le texte est rédigé de manière assez sèche, sans fioritures ; ce choix le rend d'ailleurs facile à lire. Les explications présentent un certain côté pédagogique qui plaira à bon nombre d'étudiants. Néanmoins, ce dépouillement impose des connaissances préexistantes dans le domaine, bien que pas forcément très poussées : la très brève introduction mène directement au vif du sujet, une progression assez étonnante.

Il s'agit de l'un des rares ouvrages à traiter tant des algorithmes que des techniques d'implémentation, ce qui en fait un point positif : ce lien aide le lecteur à rassembler Hadoop & co. avec les algorithmes d'apprentissage. On peut cependant regretter le fait que les exemples ne soient pas toujours les mieux choisis : notamment, le chapitre sur le calcul de haute performance présente diverses notions sous l'angle habituel de la résolution d'équations aux dérivées partielles — un sujet assez éloigné de la science des données.

La plupart des méthodes d'apprentissage sont ici survolées : les méthodes probabilistes (dont les modèles graphiques), les réseaux neuronaux, les ensembles, les plus proches voisins. Étonnamment, pourtant, les arbres de décision ne sont jamais présentés, ainsi que leurs dérivés directs (comme les forêts aléatoires), malgré leur grande utilité pratique. Tout le côté pratique est toutefois mis de côté : les neuf auteurs se focalisent sur les aspects théoriques du domaine, les principes derrière les méthodes, dans l'idée qu'il « suffit » alors de regarder la documentation d'une bibliothèque d'apprentissage.

Le chapitre sur la visualisation étonne quelque peu, mais apporte des compléments d'information très utiles. Il distille l'expérience acquise, notamment en cartographie, sur la meilleure manière de faire passer un message à travers des graphiques. Il n'importe là pas d'utiliser correctement les bibliothèques, mais d'agencer leurs fonctionnalités pour que les graphiques atteignent leur objectif.

En résumé, il s'agit là d'un très bon support de cours ou d'un petit ouvrage de référence dans le domaine de la science des données. Il ratisse assez large, en donnant des pointeurs vers la recherche actuelle dans le domaine, en omettant la pratique. (À noter que les solutions des exercices ne sont pas fournies.)




 Commenter Signaler un problème

Avatar de dourouc05 dourouc05 - Responsable Qt & Livres https://www.developpez.com
le 17/10/2018 à 0:59
Un ouvrage de référence sur les data sciences !
La data science, ou science des données, est la discipline qui traite de la collecte, de la préparation, de la gestion, de l'analyse, de l'interprétation et de la visualisation de grands ensembles de données complexes. Elle n'est pas seulement concernée par les outils et les méthodes pour obtenir, gérer et analyser les données ; elle consiste aussi à en extraire de la valeur et de la connaissance.
Cet ouvrage présente les fondements scientifiques et les composantes essentielles de la science des données, à un niveau accessible aux étudiants de master et aux élèves ingénieurs. Notre souci a été de proposer un exposé cohérent reliant la théorie aux algorithmes développés dans ces domaines. Il s'adresse aux chercheurs et ingénieurs qui abordent les problématiques liées à la science des données, aux data scientists de PME qui utilisent en profondeur les outils d'apprentissage, mais aussi aux étudiants de master, doctorants ou encore futurs ingénieurs qui souhaitent un ouvrage de référence en data science.
A qui s'adresse ce livre ?

  • Aux développeurs, statisticiens, étudiants et chefs de projets ayant à résoudre des problèmes de data science.
  • Aux data scientists, mais aussi à toute personne curieuse d'avoir une vue d'ensemble de l'état de l'art du machine learning.

Data science : cours et exercices

 
couverture du livre Apprentissage artificiel

Note 4.5 drapeau
Détails du livre
Sommaire
Critiques (2)
1 commentaire
 
 

Apprentissage artificiel

Deep learning, concepts et algorithmes

de
Public visé : Intermédiaire

Résumé de l'éditeur

Les programmes d'intelligence artificielle sont aujourd'hui capables de reconnaître des commandes vocales, d'analyser automatiquement des photos satellites, d'assister des experts pour prendre des décisions dans des environnements complexes et évolutifs (analyse de marchés financiers, diagnostics médicaux...), de fouiller d'immenses bases de données hétérogènes, telles les innombrables pages du Web...

Pour réaliser ces tâches, ils sont dotés de modules d'apprentissage leur permettant d'adapter leur comportement à des situations jamais rencontrées, ou d'extraire des lois à partir de bases de données d'exemples. Ce livre présente les concepts qui sous-tendent l'apprentissage artificiel, les algorithmes qui en découlent et certaines de leurs applications. Son objectif est de décrire un ensemble d'algorithmes utiles en tentant d'établir un cadre théorique pour l'ensemble des techniques regroupées sous ce terme "d'apprentissage artificiel".

La troisième édition de ce livre a été complètement réorganisée pour s'adapter aux évolutions très significatives de l'apprentissage artificiel ces dernières années. Une large place y est accordée aux techniques d'apprentissage profond et à de nouvelles applications, incluant le traitement de flux de données.

A qui s'adresse ce livre ?

Ce livre s'adresse tant aux décideurs et aux ingénieurs qui souhaitent mettre au point des applications qu'aux étudiants de niveau Master 1 et 2 et en école d'ingénieurs, qui souhaitent un ouvrage de référence sur ce domaine clé de l'intelligence artificielle.

Édition : Eyrolles - 912 pages, 3e édition, 17 mai 2018

ISBN10 : 2212675224 - ISBN13 : 9782212675221

Commandez sur www.amazon.fr :

56.00 € TTC (prix éditeur 56.00 € TTC)
  • Des machines apprenantes !
  • L'induction exploitant la structure de l'espace des hypothèses
  • L'induction par optimisation d'un critère inductif
  • L'induction par comparaison à des exemples (et par collaboration)
  • L'apprentissage descriptif
  • Apprentissage en environnement et non stationnaire
  • Aspects pratiques et suppléments
  • Annexes et bibliographie
Critique du livre par la rédaction Thibaut Cuvelier le 9 octobre 2018
À l'achat, ce livre se dénote par son poids, son nombre de pages. Que peut-il donc contenir de plus que la concurrence ? Le lecteur intéressé regardera ensuite la table des matières et verra que les sujets abordés sont plus étendus : les auteurs ne se focalisent pas sur l'apprentissage automatique, mais visent plus large, toutes les techniques qui permettent à un ordinateur d'extraire des connaissances depuis un jeu de données. C'est là le grand avantage de cet ouvrage, il cherche à donner une vue d'ensemble aussi diversifiée que possible sur un domaine d'étude loin d'être jeune. À la lecture, ce pressentiment se confirme : c'est complet, si ce n'est exhaustif ; c'est une référence (et le texte est prévu comme tel : aucun ordre n'est imposé sur la lecture des chapitres).

La rédaction diffère également de la concurrence, le point de vue adopté étant plus basé sur la théorie que la pratique. Les titres des chapitres ne révèlent pleinement leur cohérence qu'à la lecture. C'est là un parti pris : plus de théorie que de pratique. Cette structuration mène également à des points plus étonnants, comme le fait que la question de l'évaluation d'un apprentissage est traitée d'abord pour l'apprentissage non supervisé, puis (bien) après pour l'apprentissage supervisé plus classique. Également, le texte fourmille de références vers des articles plus académiques encore (les pages 851 à 889 sont réservées à la bibliographie), pour creuser plus avant si le cœur vous en dit.

Un point négatif (par rapport au public visé : « décideurs et […] ingénieurs […, ainsi] qu'aux étudiants de niveau Master 1 et 2 et en école d'ingénieurs ») est justement le côté théorique de toutes choses, le formalisme mathématique poussé à un très bon niveau. Les auteurs se veulent formels, et ce, dès l'introduction. Cela rend malheureusement l'ouvrage assez peu accessible, voire complètement imperméable pour les allergiques des mathématiques. Pourtant, lors de la majorité des chapitres, on se rend compte de l'effort fourni pour éviter l'abus d'anglicismes. Le sous-titre présente le mot clé « deep learning », mais celui-ci n'occupe pas une place aussi prépondérante que cela laisserait penser (deux chapitres sur vingt-trois).

On sent assez fortement qu'il y a trois auteurs, l'ouvrage manquant parfois de cohérence. Il est régulier de voir des références au passé à des notions qui ne sont pourtant détaillées que dans plusieurs chapitres (de manière similaire, les couvertures de Markov sont présentées au moins trois fois). Les rappels sont fréquents, mais il est plus gênant que, lorsque tous les chapitres pointent vers une notion à un endroit précis, cette définition soit elle aussi un rappel. Finalement, certaines informations sont clairement périmées : une note de bas de page indique que « très peu de travaux traitent de ce problème à ce jour (octobre 2009) », soit un peu avant la sortie de l'édition… précédente (en 2010). Trois sources de données sont citées (Microsoft Azure Marketplace, Datamarket, Data Publica), seule la dernière existe encore — quid dans quelques années ?

Par conséquent, l'ouvrage semble plutôt prédestiné à ceux qui veulent une compréhension profonde de la théorie derrière l'apprentissage, de ses liens avec les algorithmes. Il pèche sur les questions plus pratiques. Il n'y a donc pas beaucoup de souci à se faire pour la péremption des informations, qui resteront valables des années, si ce n'est dizaines d'années pour la plupart. Le public visé est plutôt mathématicien ou chercheur dans le domaine : il faut avoir déjà des connaissances préalables en apprentissage pour tirer un maximum du livre.
Critique du livre par la rédaction François DORIN le 5 décembre 2018
Ce livre est un pavé. Dans le bon sens du terme. Très complet, il aborde la théorie sur de nombreux aspects de l’apprentissage artificiel, de l’algorithme des plus proches voisins, aux séparateurs par vastes marges en passant par les réseaux connexionnistes (et bien d’autres encore).

Loin d’être facile à prendre en main, il nécessite un très bon niveau pour comprendre les différentes théories abordées. De ce fait, il n’est pas véritablement à conseiller à un débutant.

Dans les points positifs, on peut noter la présence de nombreux chapitres, chacun sur un sujet bien précis. À la fin de la grande majorité d’entre eux, se trouve un point historique ainsi qu’un résumé des notions abordées.

Malgré le niveau élevé de cet ouvrage, les nombreuses références bibliographiques en font paradoxalement un point d’entrée idéal pour un néophyte (mais disposant malgré tout d’un bon bagage mathématique).

Je note toutefois quelques points négatifs. Tout d’abord, j’ai ressenti un manque de cohérence dans l’organisation des différents chapitres. Ils font fréquemment référence à d’autres chapitres, et généralement de manière assez éloignée (comme le chapitre 3 référençant le chapitre 18 ou 20). Cela gêne pour une lecture linéaire.

Ensuite, je trouve dommage que pour une réédition, on ait parfois l’impression que les références n’aient pas été mises à jour. Les références citées sont parfois assez anciennes. Et cette impression s’est transformée en quasi-certitude page 730, où il est indiqué « qu’il n’existe à ce jour que très peu de travaux », avec une note de bas de page précisant que le « à ce jour » correspond au mois d’octobre 2009. Pour une réédition publiée en 2018, je trouve cela fort préjudiciable.

En dernier « reproche », je noterai un manque de finition qui vient perturber la lecture. Je peux citer des références non résolues (« ?? » dans le texte), des courbes couleur imprimées en noir et blanc, rendant impossible de savoir quelle courbe est la verte et laquelle est la rouge, ou encore les petites erreurs de typographie, surtout lorsqu’elles interviennent dans des formules mathématiques.

Pour conclure, malgré ses imperfections et son niveau de difficulté élevé, cet ouvrage reste un très bon ouvrage pour aborder, de manière théorique, de très nombreux aspects liés à l’apprentissage artificiel.




 Commenter Signaler un problème

Avatar de dourouc05 dourouc05 - Responsable Qt & Livres https://www.developpez.com
le 10/10/2018 à 1:12
Les programmes d'intelligence artificielle sont aujourd'hui capables de reconnaître des commandes vocales, d'analyser automatiquement des photos satellites, d'assister des experts pour prendre des décisions dans des environnements complexes et évolutifs (analyse de marchés financiers, diagnostics médicaux...), de fouiller d'immenses bases de données hétérogènes, telles les innombrables pages du Web...

Pour réaliser ces tâches, ils sont dotés de modules d'apprentissage leur permettant d'adapter leur comportement à des situations jamais rencontrées, ou d'extraire des lois à partir de bases de données d'exemples. Ce livre présente les concepts qui sous-tendent l'apprentissage artificiel, les algorithmes qui en découlent et certaines de leurs applications. Son objectif est de décrire un ensemble d'algorithmes utiles en tentant d'établir un cadre théorique pour l'ensemble des techniques regroupées sous ce terme "d'apprentissage artificiel".

La troisième édition de ce livre a été complètement réorganisée pour s'adapter aux évolutions très significatives de l'apprentissage artificiel ces dernières années. Une large place y est accordée aux techniques d'apprentissage profond et à de nouvelles applications, incluant le traitement de flux de données.

A qui s'adresse ce livre ?

Ce livre s'adresse tant aux décideurs et aux ingénieurs qui souhaitent mettre au point des applications qu'aux étudiants de niveau Master 1 et 2 et en école d'ingénieurs, qui souhaitent un ouvrage de référence sur ce domaine clé de l'intelligence artificielle.
Apprentissage artificiel : deep learning, concepts et algorithmes, 3e édition
Avatar de dourouc05 dourouc05 - Responsable Qt & Livres https://www.developpez.com
le 07/12/2018 à 7:20
Chers membres du Club,

Nous vous invitons à lire la critique que François DORIN a bien voulu faire sur ce livre :

Apprentissage artificiel : deep learning, concepts et algorithmes, 3e édition

Bonne lecture

 
couverture du livre Deep Learning avec TensorFlow

Note 4.75 drapeau
Détails du livre
Sommaire
Critiques (2)
1 commentaire
 
 

Deep Learning avec TensorFlow

Mise en oeuvre et cas concrets

de
Traducteurs : Hervé Soulard
Public visé : Débutant

Résumé de l'éditeur

Cet ouvrage, conçu pour tous ceux qui souhaitent s'initier au Deep Learning (apprentissage profond) est la traduction de la deuxième partie du best-seller américain Hands-On Machine Learning with Scikit-Learn & TensorFlow.

Le Deep Learning est récent et il évolue vite. Ce livre en présente les principales techniques : les réseaux de neurones profonds, capables de modéliser toutes sortes de données, les réseaux de convolution, capables de classifier des images, les segmenter et découvrir les objets ou personnes qui s'y trouvent, les réseaux récurrents, capables de gérer des séquences telles que des phrases, des séries temporelles, ou encore des vidéos, les autoencodeurs qui peuvent découvrir toutes sortes de structures dans des données, de façon non supervisée, et enfin le Reinforcement Learning (apprentissage par renforcement) qui permet de découvrir automatiquement les meilleures actions pour effectuer une tâche (par exemple un robot qui apprend à marcher).

Ce livre présente TensorFlow, le framework de Deep Learning créé par Google. Il est accompagné de notebooks Jupyter (disponibles sur github) qui contiennent tous les exemples de code du livre, afin que le lecteur puisse facilement tester et faire tourner les programmes. Il complète un premier livre intitulé Machine Learning avec Scikit-Learn.

Édition : Dunod - 320 pages, 1re édition, 22 août 2018

ISBN10 : 2100759930 - ISBN13 : 9782100759934

Commandez sur www.amazon.fr :

39.00 € TTC (prix éditeur 39.00 € TTC)
Les fondamentaux du Machine Learning
Introduction à TensorFlow
Introduction aux réseaux de neurones artificiels
Entraînement de réseaux de neurones profonds
Distribution de TensorFlow sur des processeurs ou des serveurs
Réseaux de neurones convolutifs
Réseaux de neurones récurrents
Autoencodeurs
Critique du livre par la rédaction Thibaut Cuvelier le 21 août 2018
L'apprentissage profond est la dernière technique à la mode pour l'apprentissage automatique, avec un évident manque de maturité. Il n'empêche que le domaine a donné d'excellents résultats dans un certain nombre d'applications, pour des jeux (comme AlphaGo) et la reconnaissance d'images, notamment. C'est pourquoi des livres comme celui-ci ont un marché à saisir. Comme dans le premier tome, Aurélien Géron ne se focalise pas sur les applications directement pratiques, mais passe aussi du temps sur les principes sous-jacents, de telle sorte que le lecteur a toutes les clés en main pour comprendre ce qu'il fait. Par rapport au premier ouvrage, celui-ci se montre néanmoins beaucoup plus pratique (les exemples de code sont plus nombreux) et passe nécessairement sur le sujet du calcul à plus grande échelle (sur plusieurs machines et cartes graphiques) — sans quoi on serait bien en peine d'exploiter complètement les techniques décrites.

Les points forts de cette œuvre se rapprochent de la première partie, notamment une bonne dose de pédagogie et une langue compréhensible par la majorité (à condition d'avoir les bonnes bases mathématiques) — l'emploi de termes anglophones est cependant plus présent que dans le premier tome. La variété de sujets abordés est intéressante, car elle s'étend sur tous les domaines actuels où l'apprentissage profond se développe (convolution, récursion, apprentissage par renforcement, principalement). Ce dernier exemple est particulièrement important, car rares sont les ressources qui parlent d'apprentissage par renforcement, surtout à un tel niveau de détail (en omettant toutefois les parties mathématiques assez complexes qui viennent rapidement dans le domaine — un grand plus de cet ouvrage qui facilite fortement la compréhension !). On peut regretter que Keras ou une autre interface de plus haut niveau ne soit pas traitée, pour faciliter l'expérimentation rapide.

Cet ouvrage se destine donc à toutes les personnes débutant dans l'apprentissage profond (ou qui connaissent l'utilisation plus classique des réseaux neuronaux, mais souhaitent se mettre au goût du jour). Il servira surtout à ceux qui veulent une référence écrite à garder sous la main ou qui n'aiment pas apprendre par le biais de vidéos en ligne (à ce niveau, quand il faut clairement faire un tri dans les vidéos disponibles, ce livre n'est pas démuni d'avantages).
Critique du livre par la rédaction Julien Plu le 23 octobre 2018
Je suis impliqué dans l'apprentissage automatique en tant que chercheur depuis environ six ans, en utilisant Python, et l'apprentissage des packages comme Pandas, NumPy, SciPy et scikit-learn n'est pas simple. C'est pour cette raison qu'il est indispensable d'avoir déjà des bases avec ces packages avant d'aborder cet ouvrage et de passer à TensorFlow.

TensorFlow est un framework difficile à prendre en main et à comprendre. Je travaille dessus depuis environ trois ans et il y a toujours des parties que je ne maîtrise pas, surtout que c'est un framework qui change son API très souvent. J'étais donc curieux de voir comment se présentait un ouvrage éducatif sur ce framework et je dois dire que j'ai été agréablement surpris par la clarté des explications et des implémentations des algorithmes : j'ai lu beaucoup d'explications détaillées sur les principales architectures de réseaux neuronaux (FFNN, CNN, RNN…) et rares sont celles qui sont aussi claires et intuitives. Une fois cet ouvrage fini, toute personne ayant les bases suffisantes en apprentissage automatique (voir l'ouvrage du même auteur sur le sujet) arrivera parfaitement à mettre en œuvre un réseau de neurones, ainsi qu'à réimplémenter un réseau de neurones existant.

Je recommande donc fortement cet ouvrage à qui veut apprendre les bases de l'apprentissage profond et les implémentations en TensorFlow.




 Commenter Signaler un problème

Avatar de dourouc05 dourouc05 - Responsable Qt & Livres https://www.developpez.com
le 22/08/2018 à 14:37
Cet ouvrage, conçu pour tous ceux qui souhaitent s'initier au Deep Learning (apprentissage profond) est la traduction de la deuxième partie du best-seller américain Hands-On Machine Learning with Scikit-Learn & TensorFlow.
Le Deep Learning est récent et il évolue vite. Ce livre en présente les principales techniques : les réseaux de neurones profonds, capables de modéliser toutes sortes de données, les réseaux de convolution, capables de classifier des images, les segmenter et découvrir les objets ou personnes qui s'y trouvent, les réseaux récurrents, capables de gérer des séquences telles que des phrases, des séries temporelles, ou encore des vidéos, les autoencodeurs qui peuvent découvrir toutes sortes de structures dans des données, de façon non supervisée, et enfin le Reinforcement Learning (apprentissage par renforcement) qui permet de découvrir automatiquement les meilleures actions pour effectuer une tâche (par exemple un robot qui apprend à marcher).
Ce livre présente TensorFlow, le framework de Deep Learning créé par Google. Il est accompagné de notebooks Jupyter (disponibles sur github) qui contiennent tous les exemples de code du livre, afin que le lecteur puisse facilement tester et faire tourner les programmes. Il complète un premier livre intitulé Machine Learning avec Scikit-Learn.



Deep Learning avec TensorFlow

Mise en oeuvre et cas concrets
de Aurélien Géron
Avatar de Malick Malick - Community Manager https://www.developpez.com
le 29/10/2018 à 2:38
Bonjour chers membres du Club,

Je vous invite à lire la critique de Julien Plu au sujet du livre Deep Learning avec TensorFlow - Mise en oeuvre et cas concrets.

Bonne lecture


 
couverture du livre Machine Learning avec Scikit-Learn

Note 4.75 drapeau
Détails du livre
Sommaire
Critiques (2)
1 commentaire
 
 

Machine Learning avec Scikit-Learn

Mise en oeuvre et cas concrets

de
Traducteurs : Anne Bohy
Public visé : Intermédiaire

Résumé de l'éditeur

Cet ouvrage, conçu pour tous ceux qui souhaitent s'initier au Machine Learning (apprentissage automatique) est la traduction de la première partie du best-seller américain Hands-On Machine Learning with Scikit-Learn & TensorFlow.

Il ne requiert que peu de connaissances en mathématiques et présente les fondamentaux du Machine Learning d'une façon très pratique à l'aide de Scikit-Learn qui est l'un des frameworks de ML les plus utilisés actuellement.

Des exercices corrigés permettent de s'assurer que l'on a assimilé les concepts et que l'on maîtrise les outils.

Des compléments en ligne interactifs sous forme de notebooks Jupyter complètent le livre avec des exemples exécutables.

Ce premier titre est complété par un second ouvrage intitulé Deep Learning avec TensorFlow.

Édition : Dunod - 254 pages, 1re édition, 30 août 2017

ISBN10 : 210076540X - ISBN13 : 9782100765409

Commandez sur www.amazon.fr :

34.00 € TTC (prix éditeur 34.00 € TTC)
Vue d’ensemble du Machine Learning
Un projet de Machine Learning de bout en bout
Classification
Entraînement de modèles
Machines à vecteurs de support
Arbres de décision
Apprentissage d'ensemble et forêts aléatoires
Réduction de dimension
Critique du livre par la rédaction Thibaut Cuvelier le 8 août 2018
On trouve sur le marché quantité de livres sur l'apprentissage automatique, mais rares sont ceux qui valent vraiment la peine. Cet ouvrage trouve le juste équilibre entre une composante théorique (savoir comment fonctionnent les algorithmes, sans formalisme excessif) et pratique (utiliser des méthodes d'apprentissage en réalité, sans code inutile). Le sujet du passage à l'échelle (avec une plateforme comme Hadoop) n'est pas abordé, mais cela ne nuit pas au lecteur, qui pourra se référer à l'abondante littérature sur le sujet, tout comme les sujets les plus avancés : l'auteur se focalise sur les algorithmes les plus utiles, plutôt que sur les dernières avancées de la recherche. Le style est très loin d'être académique, même si l'ouvrage pointe régulièrement vers des articles de la littérature scientifique pour approfondir certains points.

Un des points forts est sans nul doute la pédagogie dont fait preuve l'auteur. Il n'abuse pas de jargon (la traduction en français est d'ailleurs de très bonne facture, sans quantité phénoménale d'anglicismes), pour des explications claires et progressives. Les exemples sont aussi bien choisis et donnent envie d'en faire plus. La présentation de scikit-learn n'est pas exhaustive, l'auteur préférant passer du temps sur les éléments les plus importants pour structurer correctement son code.

En résumé, on peut vraiment recommander ce livre pour toutes les personnes qui débutent dans le domaine de l'apprentissage automatique, mais aussi à toutes celles qui ont une certaine expérience et aimeraient la formaliser quelque peu. Le niveau attendu n'est pas très élevé, il suffit de connaissances assez basiques en mathématiques (à condition d'avoir une formation en informatique), comme les fonctions, les dérivées et les matrices. Par contre, il ne conviendra pas vraiment à celles et ceux qui cherchent une ressource plus avancée (même s'ils apprendront l'une ou l'autre chose utile au passage). Le seul aspect vraiment négatif est la séparation en deux ouvrages, celui-ci faisant complètement l'impasse sur les réseaux neuronaux, même si certaines remarques dans le fil du texte y font référence.
Critique du livre par la rédaction Julien Plu le 23 octobre 2018
Je travaille dans le domaine de l'apprentissage automatique depuis environ 6 années et je dois dire que ce livre est à mon sens un ouvrage abouti pour qui veut apprendre les bases de l'apprentissage automatique ainsi que les algorithmes les plus populaires et pas les plus simples. Par contre, ceux qui ont déjà une certaine expérience dans le domaine peuvent s'abstenir, car ils n'apprendront certainement pas grand-chose de plus. La partie la plus pertinente est à mon sens celle sur la méthodologie à adopter pour un projet d'apprentissage automatique (nettoyage des données, tests, analyses, etc.). L'auteur commence toujours par la théorie pour finir par un cas pratique afin de mettre le lecteur à l'aise et on sent que le style est plus celui d'un ingénieur que celui d'un chercheur, ce qui est une très bonne chose vu que cet ouvrage est censé être pour tout le monde. Le niveau requis en mathématique et en Python n'est pas très élevé, l'ouvrage est donc accessible même à un lycéen. Un autre très bon point est aussi les exercices corrigés à chaque fin de chapitre.

La seule frustration que j'aurais à la fin de ce livre est son manque de complétude, j'aurais aimé que l'auteur propose plus d'algorithmes. Par exemple, l'algorithme des K plus proches voisins, qui est beaucoup trop brièvement abordé. Malgré cela, c'est un ouvrage que je recommande très largement à toute personne désirant avoir des bases solides en apprentissage automatique.




 Commenter Signaler un problème

Avatar de Malick Malick - Community Manager https://www.developpez.com
le 26/10/2018 à 19:16
Bonjour chers membres du Club,

Je vous invite à lire la critique de Julien Plu au sujet du livre Machine Learning avec Scikit-Learn - Mise en oeuvre et cas concrets.

Bonne lecture
Avatar de dourouc05 dourouc05 - Responsable Qt & Livres https://www.developpez.com
le 09/08/2018 à 0:03
Cet ouvrage, conçu pour tous ceux qui souhaitent s'initier au Machine Learning (apprentissage automatique) est la traduction de la première partie du best-seller américain Hands-On Machine Learning with Scikit-Learn & TensorFlow.

Il ne requiert que peu de connaissances en mathématiques et présente les fondamentaux du Machine Learning d'une façon très pratique à l'aide de Scikit-Learn qui est l'un des frameworks de ML les plus utilisés actuellement.

Des exercices corrigés permettent de s'assurer que l'on a assimilé les concepts et que l'on maîtrise les outils.

Des compléments en ligne interactifs sous forme de notebooks Jupyter complètent le livre avec des exemples exécutables.

Ce premier titre est complété par un second ouvrage intitulé Deep Learning avec TensorFlow.
[h=2]Machine Learning avec Scikit-Learn
[/h] [h=3]Mise en oeuvre et cas concrets[/h] de Aurélien Géron

 
couverture du livre Big Data et Machine Learning

Note 4 drapeau
Détails du livre
Sommaire
Critiques (1)
0 commentaire
 
 

Big Data et Machine Learning

Les concepts et les outils de la data science

de
Public visé : Débutant

Résumé de l'éditeur

Cet ouvrage s'adresse à tous ceux qui cherchent à tirer parti de l'énorme potentiel des « technologies Big Data », qu'ils soient data scientists, DSI, chefs de projets ou spécialistes métier.

Le Big Data s'est imposé comme une innovation majeure pour toutes les entreprises qui cherchent à construire un avantage concurrentiel grâce à l'exploitation de leurs données clients, fournisseurs, produits, processus, machines, etc.

Mais quelle solution technique choisir ? Quelles compétences métier développer au sein de la DSI ?

Ce livre est un guide pour comprendre les enjeux d'un projet Big Data, en appréhender les concepts sous-jacents (en particulier le Machine Learning) et acquérir les compétences nécessaires à la mise en place d'un data lab.

Il combine la présentation :
  • de notions théoriques (traitement statistique des données, calcul distribué...) ;
  • des outils les plus répandus (écosystème Hadoop, Storm...) ;
  • d'exemples d'applications ;
  • d'une organisation typique d'un projet de data science.


Cette deuxième édition est complétée et enrichie par des mises à jour sur les réseaux de neurones et sur le Deep Learning ainsi que sur Spark..

Édition : Dunod - 272 pages, 2e édition, 9 octobre 2016

ISBN10 : 2100754637 - ISBN13 : 9782100754632

Commandez sur www.amazon.fr :

29.87 € TTC (prix éditeur 29.90 € TTC)
Les fondements du Big Data

  • Les origines du Big Data
  • Le Big Data dans les organisations
  • Le mouvement NoSQL
  • L'algorithme MapReduce et le framework Hadoop


Le métier de data scientist

  • Le quotidien du data scientist
  • Exploration et préparation de données
  • Le Machine Learning
  • La visualisation des données


Les outils du Big Data

  • L'écosystème Hadoop
  • Analyse de logs avec Pig et Hive
  • Les architectures lambda
  • Apache Storm
Critique du livre par la rédaction Thibaut Cuvelier le 25 septembre 2017
Cet ouvrage concerne deux mots qui reviennent régulièrement à l'actualité : le « big data » et le « machine learning ». Il dresse effectivement un tour d'horizon assez large de cet univers : toutes les étapes d'un projet d'exploitation de données sont traitées, depuis les questions auxquelles on peut s'attendre à trouver une réponse au traitement des données, depuis le déploiement d'une grappe de calcul jusqu'aux algorithmes qui y tourneront, sans oublier la visualisation.

Le principal avantage du livre est qu'il présente, dans un format compact, l'ensemble des notions de base utiles à toute personne devant intervenir dans un projet d'exploitation de données. Son public est donc assez large, le contenu ne nécessite bien souvent pas une longue expérience en informatique pour s'y retrouver : les auteurs assument entièrement ce choix. Les explications sont généralement claires, ce qui cadre bien avec l'objectif ; les nombreuses illustrations aident également. Malgré les quatre auteurs, l'ensemble est extrêmement fluide.

Le livre n'hésite pas à tordre le cou à certaines idées reçues. Non, la science de données n'est pas neuve : ce qui l'est, c'est la capacité (technique) de gérer de grands volumes d'information. Non, de grandes quantités de données ne résoudront pas tout problème dans une entreprise.

Les aspects réellement techniques ne sont pas oubliés. Le livre s'appesantit sur l'architecture MapReduce avec l'outil Hadoop pour déployer les calculs à large échelle, mais n'oublie pas de présenter YARN ou Drill. Conformément à l'esprit des auteurs, l'installation des outils est mise sur le côté, puisqu'ils préfèrent parler de distributions qui facilitent en bonne partie le travail et sont très bien adaptées à ceux qui débutent dans le domaine.

On peut cependant noter l'un ou l'autre point faible. Le côté apprentissage automatique est extrêmement limité, malgré sa présence dans le titre. La section sur l'apprentissage profond dénote fortement avec le reste du chapitre, étant extrêmement mathématique (au contraire du reste de l'ouvrage !). Une seule étude de cas est présentée, ce qui est dommage, notamment au niveau de la partie sur les outils.

Pour résumer, ce livre est à mettre entre toutes les mains des personnes qui aimeraient découvrir le domaine de l'exploitation des données à grande échelle. Elles auront un aperçu complet et bon nombre de pointeurs pour continuer leur apprentissage.




 Commenter Signaler un problème

Avatar de dourouc05 dourouc05 - Responsable Qt & Livres https://www.developpez.com
le 26/09/2017 à 21:16
Cet ouvrage s'adresse à tous ceux qui cherchent à tirer parti de l'énorme potentiel des « technologies Big Data », qu'ils soient data scientists, DSI, chefs de projets ou spécialistes métier.

Le Big Data s'est imposé comme une innovation majeure pour toutes les entreprises qui cherchent à construire un avantage concurrentiel grâce à l'exploitation de leurs données clients, fournisseurs, produits, processus, machines, etc.

Mais quelle solution technique choisir ? Quelles compétences métier développer au sein de la DSI ?

Ce livre est un guide pour comprendre les enjeux d'un projet Big Data, en appréhender les concepts sous-jacents (en particulier le Machine Learning) et acquérir les compétences nécessaires à la mise en place d'un data lab.

Il combine la présentation :
  • de notions théoriques (traitement statistique des données, calcul distribué...) ;
  • des outils les plus répandus (écosystème Hadoop, Storm...) ;
  • d'exemples d'applications ;
  • d'une organisation typique d'un projet de data science.


Cette deuxième édition est complétée et enrichie par des mises à jour sur les réseaux de neurones et sur le Deep Learning ainsi que sur Spark..
Voir les critiques.

 
couverture du livre Data Scientist et langage R

Note 3 drapeau
Détails du livre
Sommaire
Critiques (2)
0 commentaire
 
 

Data Scientist et langage R

Guide d'autoformation à l'exploitation des Big Data

de
Public visé : Intermédiaire

Résumé de l'éditeur

Tous les experts s'accordent à dire que 90% des usages du Big Data proviennent de l'utilisation des data sciences. L'objectif de ce livre est de proposer une formation complète et opérationnelle sur les data sciences qui permet de délivrer des solutions via l'usage du langage R.

Ainsi, l'auteur propose un parcours didactique et professionnalisant qui, sans autre pré-requis qu'un niveau Bac en mathématiques et une grande curiosité, permet au lecteur :
  • de s'intégrer à une équipe de data scientists,
  • d'aborder des articles de recherche possédant une haute teneur en mathématiques,
  • le cas échéant de développer en langage R, y compris des algorithmes nouveaux et de beaux graphiques,
  • ou tout simplement de manager une équipe projet comprenant des data scientists, en étant à même de dialoguer avec eux de façon efficace.


Le livre ne se cantonne pas aux algorithmes du "machine learning", il aborde divers sujets importants comme le traitement du langage naturel, les séries temporelles, la logique floue, la manipulation des images.

La dynamique de l'ouvrage soutient le lecteur pas à pas dans sa découverte des data sciences et l'évolution de ses compétences théoriques et pratiques. Le praticien en exercice y découvrira également de nombreux savoir-faire à acquérir et le manager pourra surfer sur l'ouvrage après avoir lu attentivement le bestiaire des data sciences de l'introduction, qui sans inexactitude ou vulgarisation excessive présente le sujet en faisant l'économie de mathématiques ou de formalismes dissuasifs.

Édition : ENI - 663 pages, , 1er mars 2016

ISBN10 : 2409000436 - ISBN13 : 9782409000430

Commandez sur www.amazon.fr :

54.00 € TTC (prix éditeur 54.00 € TTC)
  • Introduction
  • Premiers pas avec R
  • Maîtriser les bases
  • Techniques et algorithmes incontournables
  • Cadre méthodologique du data scientist
  • Traitement du langage naturel
  • Graphes et réseaux
  • Autres problèmes, autres solutions
  • Feature Engineering
  • Compléments utiles
  • Annexes
Critique du livre par la rédaction Nicolas Vallée le 25 juillet 2016
Cet ouvrage est destiné à un public soucieux de découvrir le langage R et son utilisation pour manipuler des jeux de données, leur appliquer quelques grands algorithmes classiques et obtenir rapidement un rendu visuel.
Dans le premier chapitre, le lecteur trouvera plus de 50 pages présentant quelques concepts se cachant derrière le terme « big data », la présentation rapide de techniques de classification et d'apprentissage, puis une présentation (trop ?) succincte de l'écosystème Hadoop.
Les chapitres suivants seront une initiation au langage R, illustrée par des exemples de toutes les techniques évoquées au chapitre 1. Cette partie s'avèrera extrêmement dense, et très utile pour se former à l'utilisation pratique de R.

En revanche, un certain lectorat pourra, à juste titre, reprocher l'absence de recul et d'approche théorique. Finalement, le lecteur saura utiliser les outils, mais n'aura pas forcément la maturité nécessaire pour faire mieux qu'appliquer les recettes présentées en espérant que le résultat soit utilisable.
Critique du livre par la rédaction Thibaut Cuvelier le 1er juillet 2017
La « science des données » se veut à la mode, ce qui incite à la publication de nombreux livres sur ce sujet. Les axes d'approche sont multiples et variés : du côté purement académique (les algorithmes d'apprentissage, étudiés dans l'abstrait) à l'extrême pragmatique (utiliser ces algorithes commes des boîtes noires). Cet ouvrage se place entre ces deux extrêmes, ce qui le rend, de prime abord, intéressant pour un public large. La présence du terme (voire jargonnerie) « big data » donne l'impression qu'il sera sujet de grands volumes de données, mais l'auteur n'en traite que très rapidement, se focalisant sur les aspects de traitement des données, de leur visualisation et de l'application des algorithmes principaux d'apprentissage automatique.

D'une manière générale, ce livre déçoit par son manque de structure. Les sections se succèdent sans nécessairement avoir de lien entre elles, en présentant parfois approximativement des techniques issues des statistiques et de l'apprentissage automatique sans vraiment de recul. Par exemple, on aura droit à une présentation des data frames de R, très rapidement suivie de la notion d'arbre de décision — sans que les deux aient l'air liés d'une quelconque manière — ou encore à RCommander juste après une introduction à la notion de variable aléatoire. Cette construction déstructurée pourrait être avantageuse pour un public plutôt débutant, sans bagage conséquent en mathématiques ou en programmation, qui aura ainsi la possibilité de tester directement la syntaxe de R entre le chargement d'un jeu de données et son exploitation par apprentissage automatique, sans s'allourdir de considérations autres que pratiques. Néanmoins, une structure assumée aiderait certains à comprendre… et surtout à utiliser l'ouvrage comme référence.

Cet ouvrage contient une introduction à la programmation en R de manière intuitive, renforcée par quantité d'exemples : elle devrait donner les bases à ceux qui n'ont que très peu touché à la programmation, des bases suffisantes pour écrire leur propre code proprement — même en utilisant l'approche orientée objet. Cependant, par la suite, l'auteur ne convainc pas réellement que R est l'outil le plus approprié pour ce cas d'utilisation, notamment à cause du nombre d'avertissements égrainés tout au long de l'ouvrage, autant d'indicateurs que le langage est piégeux. Un bon nombre d'outils est présenté, mais très rarement approfondi : par exemple, dplyr est très rapidement présenté, mais tout aussi vite oublié, sans montrer réellement ses apports par rapport aux fonctionnalités de base de R.

Le premier chapitre du livre est néanmoins très intéressant, notamment pour son bestiaire de la science des données : tous les concepts de base y sont représentés, dont une série graphiquement. Les explications sont succinctes, parfois approximatives, mais facilitent la compréhension du domaine dans son ensemble, chaque élément menant au suivant.
L'autre chapitre qui fait sortir ce livre de la moyenne concerne le suivi d'un projet de développement dans le domaine de la science des données. Il devrait aider le lecteur à s'organiser en situation réelle, notamment en pointant les différences par rapport aux cycles de développement logiciel.

Tout au long de l'ouvrage, l'auteur ne suit qu'une seule approche : comprendre le jeu de données (à l'aide de graphiques, principalement) aide à le modéliser, c'est-à-dire à choisir et appliquer un algorithme d'apprentissage automatique. L'approche inverse, qui consiste à exploiter le résultat d'algorithmes d'apprentissage pour analyser les données, n'est reléguée qu'à quelques notes éparses (à peine parle-t-on de l'importance des variables déterminée par une forêt aléatoire). On a là l'impression que l'auteur a une bonne expérience du domaine, avec un biais très fort envers les solutions très pragmatiques, mais nettement moins envers la recherche, toujours florissante dans le domaine — un comble, quand l'un des objectifs annoncés du livre est de mener à un niveau de compréhension suffisant du domaine pour aborder la littérature scientifique de pointe. Les notions théoriques ne sont toutefois pas oubliées, avec des présentations assez détaillées en ce qui concerne les probabilités et variables aléatoires (jusqu'à préciser la définition d'une tribu !) ou encore l'algèbre linéaire — sans que ces rappels soient réellement mis en rapport avec le reste de l'ouvrage.

Certains sujets sont abordés de manière extrêmement superficielle (comme le traitement d'images ou encore la logique floue), les rendant strictement inutiles. D'autres le sont, mais sans que ce soit justifié (le niveau de détail des variables aléatoires ou encore l'optimisation par essaims) : ces outils ne sont pas mis en lien avec le reste des thèmes abordés.

En résumé, ce livre pourrait être utile pour des débutants dans le domaine, qui n'ont pas une grande expérience dans le domaine ou un bagage mathématique poussé. Ces gens pourront profiter du livre, en omettant les parties trop mathématiques abstraites. Cela ne signifie pas que, pour ce public, tous les objectifs annoncés sont atteints. Difficile d'être pleinement opérationnel après uniquement la lecture de ce livre, de « s'autoformer », même en approfondissant chacun des exemples. Par contre, le niveau d'exposition devrait être suffisant pour dialoguer en profondeur avec des personnes dont la science des données est le domaine de prédilection.




 Commenter Signaler un problème

Avatar de gorgonite gorgonite - Rédacteur/Modérateur https://www.developpez.com
le 25/07/2016 à 11:43
Data Scientist et langage R
Guide d'autoformation à l'exploitation des Big Data
Tous les experts s'accordent à dire que 90% des usages du Big Data proviennent de l'utilisation des data sciences. L'objectif de ce livre est de proposer une formation complète et opérationnelle sur les data sciences qui permet de délivrer des solutions via l'usage du langage R.

Ainsi, l'auteur propose un parcours didactique et professionnalisant qui, sans autre pré-requis qu'un niveau Bac en mathématiques et une grande curiosité, permet au lecteur :
  • de s'intégrer à une équipe de data scientists,
  • d'aborder des articles de recherche possédant une haute teneur en mathématiques,
  • le cas échéant de développer en langage R, y compris des algorithmes nouveaux et de beaux graphiques,
  • ou tout simplement de manager une équipe projet comprenant des data scientists, en étant à même de dialoguer avec eux de façon efficace.


Le livre ne se cantonne pas aux algorithmes du "machine learning", il aborde divers sujets importants comme le traitement du langage naturel, les séries temporelles, la logique floue, la manipulation des images.

La dynamique de l'ouvrage soutient le lecteur pas à pas dans sa découverte des data sciences et l'évolution de ses compétences théoriques et pratiques. Le praticien en exercice y découvrira également de nombreux savoir-faire à acquérir et le manager pourra surfer sur l'ouvrage après avoir lu attentivement le bestiaire des data sciences de l'introduction, qui sans inexactitude ou vulgarisation excessive présente le sujet en faisant l'économie de mathématiques ou de formalismes dissuasifs.

[Lire la suite]




 
couverture du livre Recherche d'information

Note 4 drapeau
Détails du livre
Sommaire
Critiques (2)
0 commentaire
 
 

Recherche d'information

Applications, modèles et algorithmes — data mining, décisionnel et big data

de
Public visé : Intermédiaire

Résumé de l'éditeur

Le premier ouvrage francophone sur les algorithmes qui sous-tendent les technologies de big data et les moteurs de recherche !

Depuis quelques années, de nouveaux modèles et algorithmes sont mis au point pour traiter des données de plus en plus volumineuses et diverses. Cet ouvrage présente les fondements scientifiques des tâches les plus répandues en recherche d'information (Rl), tâches également liées au data mining, au décisionnel et plus générale-ment à l'exploitation du big data.

La deuxième édition de cet ouvrage propose un exposé détaillé et cohérent des algorithmes classiques développés dans ce domaine, abordable par des lecteurs qui cherchent à connaître le mécanisme des outils quotidiens d'Internet. De plus, le lecteur approfondira les concepts d'indexation, de compression, de recherche sur le Web, de classification et de catégorisation, et pourra prolonger cette étude avec les exercices corrigés proposés en fin de chapitre.

Ce livre s'adresse tant aux chercheurs et ingénieurs qui travaillent dans le domaine de l'accès à l'information et employés de PME qui utilisent en profondeur les outils du webmarketing, qu'aux étudiants de Licence, Master, écoles d'ingénieurs ou doctorants qui souhaitent un ouvrage de référence sur la recherche d'information.

Édition : Eyrolles - 294 pages, 2e édition, 3 janvier 2017

ISBN10 : 2212673760 - ISBN13 : 9782212673760

Commandez sur www.amazon.fr :

39.00 € TTC (prix éditeur 39.00 € TTC)
Représentation et indexation
Recherche d'information
Recherche sur le Web
Catégorisation de documents
Partitionnement de documents
Réseaux de neurones profonds
Recherche de thèmes latents
Considérations pratiques
Critique du livre par la rédaction Thibaut Cuvelier le 3 juin 2017
L'exploitation des données, dans toute la généricité des termes employés, est un terme qui revient très régulièrement dans toutes les libraires, avec quantité d'ouvrages sur le sujet. Cependant, fort peu nombreux sont ceux qui traitent du cas très particulier où les données sont textuelles : c'est exactement ce trou que veut combler ce livre. Son titre indique qu'il portera principalement sur la manière de rechercher de l'information utile dans une masse de documents, tel un moteur de recherche. C'est d'ailleurs à ce thème que sont dédiés les premiers chapitres. Les deux auteurs s'ouvrent à des sujets connexes qui traitent de l'exploitation d'une quantité de textes, comme leur classification ou l'extraction de thème latents. On peut regretter que certains mots aient été ajoutés à la couverture sans qu'ils soient réellement traités dans le livre : « data mining », « big data »…

Ces trois cents pages explorent le domaine avec une approche mathématique : les auteurs ne vous présentent pas d'outil-boîte noire à utiliser pour obtenir un résultat sans en comprendre le fonctionnement — ni les hypothèses à poser pour donner des résultats en des temps raisonnables. Les auteurs y passent d'ailleurs un certain temps. Au contraire, l'aspect pratique est relativement délaissé dans l'ouvrage, se concentrant sur les concepts principalement utilisés dans le domaine. Ainsi, contrairement à ce que la quatrième de couverture promet, il ne s'adresse pas tellement à un public de professionnels, mais plutôt d'étudiants et de chercheurs, dont l'objectif est d'atteindre un bon niveau de compréhension du domaine. En cela, le grand nombre de références vers des publications scientifiques de pointe pour approfondir les sujets abordés est une bonne chose. L'ouvrage pourra rester des années dans une bibliothèque sans prendre une ride.

Cependant, après avoir fini la lecture, difficile de mettre en pratique le contenu de l'ouvrage : c'est une chose que l'on peut regretter dans ce livre. Peu d'outils pratiques sont cités : quelques-uns sont égrainés à travers le texte (auquel cas peu de choix est proposé au lecteur), le dernier chapitre se consacre exclusivement à une liste raisonnée de logiciels. Par contre, leur mise en pratique est relativement occultée — à moins que l'on veuille écrire soi-même le code de chacun des algorithmes proposés (ils sont tous détaillés, pas simplement esquissés).

Le sujet est traité de manière relativement exhaustive et progressive, sans précipitation malvenue vers l'un ou l'autre sujet hyper pointu. Quand plusieurs formules sont régulièrement utilisées en pratique, les variantes sont détaillées et justifiées, pour indiquer dans quel cas l'une ou l'autre aura plus de sens. Néanmoins, le style est relativement sec, les auteurs entrent rapidement dans le vif du sujet, sans forcément chercher à justifier le pourquoi du comment. Certaines parties sont structurées au point de mettre d'abord les détails mathématiques, puis quelques utilisations potentielles par après — ce qui aura du mal à accrocher un lecteur qui ne voit pas la vie au travers d'équations. À ce niveau, quelques applications numériques ne feraient pas de mal dans le texte (elles sont rares), car elles aident à bien comprendre la mise en pratique de formules : le lien entre des séries de mots et des suites de chiffres n'est jamais aisé.

Au niveau de la structure globale de l'ouvrage, on peut principalement regretter que l'introduction de l'apprentissage automatique soit si tardive. Certes, cela aide à limiter les prérequis. Cependant, ce choix oblige les auteurs à de vagues formulations indiquant qu'il est possible d'utiliser ce genre d'algorithmes à certains endroits : le niveau de détail est insuffisant pour bien comprendre les tenants et les aboutissants de cette utilisation.

En mode mineur, on peut reprocher à certaines figures d'être relativement peu claires à comprendre. Une bonne partie du contenu du livre se trouve dans les exercices, qui donnent l'impression de ramasser toutes les parties théoriques moins importantes (les auteurs y présentent notamment l'algorithme AdaBoost, plutôt que de l'inclure dans la section sur les algorithmes d'apprentissage). Le chapitre sur les réseaux neuronaux profonds laisse sur sa faim : il présente les concepts essentiels aux réseaux neuronaux tels qu'ils étaient utilisés dans les années 1980 et 1990 (avant leur qualificatif de profond), mais la pratique dans le cadre de la recherche d'information est éclipsée en trois pages.
Critique du livre par la rédaction François DORIN le 18 septembre 2017
Ce livre aborde de nombreux aspects de la recherche d'informations (RI) : la représentation et indexation, la recherche d'informations (que ce soit dans des documents ou sur le web) ou encore la catégorisation de documents ne sont que quelques exemples de sujets abordés. Si ce livre présente les notions de base ainsi que les principaux algorithmes, il n'en reste pas moins très technique et requiert un très bon bagage, notamment mathématique, pour en comprendre toutes les subtilités. Je conseillerais donc sa lecture à un public averti en RI et/ou scientifique (ingénieurs, doctorants, chercheurs…)

Au néophyte dans ce domaine, la première lecture de cet ouvrage offre une vision globale de la RI et des différents aspects sous-jacents, des algorithmes mis en œuvre, des problématiques, etc. Une liste de différents outils open source traitant de la RI se trouve à la fin de l'ouvrage, ainsi qu'une bibliographie qui, si mes connaissances ne me permettent pas d'affirmer qu'elle est complète, a au moins le mérite d'être fournie.

On apprécie grandement la présence de nombreux exercices à la fin de chaque chapitre, permettant de manipuler les différentes notions qui, sans cela, resteraient très abstraites. Les exercices sont bien évidemment corrigés et les explications sont claires.

Un regret malgré tout en ce qui concerne la partie sur les réseaux de neurones. Cette partie me semble bien fade par rapport au reste de l'ouvrage. Les connaissances relatées ne reflètent pas les avancées qui ont été faites ces dernières années dans ce domaine, et l'usage des réseaux de neurones dans le cadre de la RI est survolé en quelques pages seulement, sans véritablement approfondir le sujet.

Pour conclure, ce livre, même s'il présente les notions et algorithmes standard de la RI, est vraiment destiné à un public spécifique et averti.




 Commenter Signaler un problème

Avatar de dourouc05 dourouc05 - Responsable Qt & Livres https://www.developpez.com
le 04/06/2017 à 13:11
Le premier ouvrage francophone sur les algorithmes qui sous-tendent les technologies de big data et les moteurs de recherche !

Depuis quelques années, de nouveaux modèles et algorithmes sont mis au point pour traiter des données de plus en plus volumineuses et diverses. Cet ouvrage présente les fondements scientifiques des tâches les plus répandues en recherche d'information (Rl), tâches également liées au data mining, au décisionnel et plus générale-ment à l'exploitation du big data.

La deuxième édition de cet ouvrage propose un exposé détaillé et cohérent des algorithmes classiques développés dans ce domaine, abordable par des lecteurs qui cherchent à connaître le mécanisme des outils quotidiens d'Internet. De plus, le lecteur approfondira les concepts d'indexation, de compression, de recherche sur le Web, de classification et de catégorisation, et pourra prolonger cette étude avec les exercices corrigés proposés en fin de chapitre.

Ce livre s'adresse tant aux chercheurs et ingénieurs qui travaillent dans le domaine de l'accès à l'information et employés de PME qui utilisent en profondeur les outils du webmarketing, qu'aux étudiants de Licence, Master, écoles d'ingénieurs ou doctorants qui souhaitent un ouvrage de référence sur la recherche d'information.
Rercherche d'information
Applications, modèles et algorithmes — data mining, décisionnel et big data

 
couverture du livre Apprentissage machine

Note 3 drapeau
Détails du livre
Sommaire
Critiques (1)
0 commentaire
 
 

Apprentissage machine

De la théorie à la pratique - Concepts fondamentaux en Machine Learning

de
Public visé : Débutant

Résumé de l'éditeur

Apprentissage machine et intelligence artificielle

L'apprentissage machine est l'un des domaines phares de l'intelligence artificielle. Il concerne l'étude et le développement de modèles quantitatifs permettant à un ordinateur d'accomplir des tâches sans qu'il soit explicitement programmé à les faire. Apprendre dans ce contexte revient à reconnaître des formes complexes et à prendre des décisions intelligentes. Compte tenu de toutes les entrées existantes, la complexité pour y arriver réside dans le fait que l'ensemble des décisions possibles est généralement très difficile à énumérer. Les algorithmes en apprentissage machine ont par conséquent été conçus dans le but d'acquérir de la connaissance sur le problème à traiter en se basant sur un ensemble de données limitées issues de ce problème.

Un ouvrage de référence

Cet ouvrage présente les fondements scientifiques de la théorie de l'apprentissage supervisé, les algorithmes les plus répandus développés suivant ce domaine ainsi que les deux cadres de l'apprentissage semi-supervisé et de l'ordonnancement, à un niveau accessible aux étudiants de master et aux élèves ingénieurs. Nous avons eu ici le souci de fournir un exposé cohérent reliant la théorie aux algorithmes développés dans cette sphère. Mais cette étude ne se limite pas à présenter ces fondements, vous trouverez ainsi quelques programmes des algorithmes classiques proposés dans ce manuscrit, écrits en langage C (langage à la fois simple et populaire), et à destination des lecteurs qui cherchent à connaître le fonctionnement de ces modèles désignés parfois comme des boîtes noires.

À qui s'adresse ce livre ?

  • Aux élèves ingénieurs, étudiants de master et doctorants en mathématiques appliquées, algorithmique, recherche opérationnelle, gestion de production, aide à la décision.
  • Aux ingénieurs, enseignants-chercheurs, informaticiens, industriels, économistes et décideurs ayant à résoudre des problèmes de classification, de partitionnement et d'ordonnancement à large échelle.

Édition : Eyrolles - 320 pages, 1re édition, 5 février 2015

ISBN10 : 2212138008 - ISBN13 : 9782212138009

Commandez sur www.amazon.fr :

39.00 € TTC (prix éditeur 39.00 € TTC)
  • Introduction à la théorie de l'apprentissage
  • Algorithmes d'optimisation convexe non-contrainte
  • Classification bi-classes
  • Classification multi-classes
  • Apprentissage semi-supervisé
  • Apprentissage de modèles d'ordonnancement
  • Annexes (rappels de probabilités, code programmes)
Critique du livre par la rédaction Thibaut Cuvelier le 8 juillet 2016
La science des données est un mot clé à la mode actuellement, puisque les entreprises cherchent à tirer le meilleur profit des informations enregistrées. L'un de ses principaux outils est l'apprentissage automatique, domaine actuellement aussi en explosion : il attire l'attention et les auteurs. Certains ouvrages ont une vocation purement pratique, en ignorant complètement les détails des algorithmes, ce qui empêche de comprendre ce qui se passe en cas de résultats insatisfaisants. Ce livre ne se place pas dans cette optique : il descend au cœur des méthodes d'apprentissage, avec les détails mathématiques afférents, de telle sorte que ces outils ne soient pas des boîtes noires. En cela, il s'oriente très clairement vers un public de chercheurs dans le domaine, d'utilisateurs conscients de leurs outils.

C'est aussi, probablement, son point faible : les détails mathématiques occultent le reste du contenu. Le formalisme y est poussé très loin, notamment pour s'accrocher autour de l'axe du principe de minimisation du risque empirique : cette organisation confère au document une remarquable cohérence, mais ignore les questions de mise en œuvre. Le titre indique pourtant un voyage de la théorie à la pratique : cette dernière est résumée à l'implémentation (en C, parfois K&R !) des algorithmes. Les traces d'utilisation réelle des algorithmes sont ténues… et nulle trace de motivation par des applications réelles du contenu. En réalité, en opposition avec son titre, le livre se destine, à peu près exclusivement, aux chercheurs, avec une abondance de preuves mathématiques, mais aussi de références vers la littérature.

On peut pointer quelques manques dans l'ouvrage, comme les arbres de décision et leurs multiples variantes comme les forêts aléatoires, mais aussi la régression, qui n'est pas traitée explicitement. Ils ne sont cependant pas gênants, bon nombre d'algorithmes sont déjà au programme (perceptrons, SVM, AdaBoost, par exemple). Par contre, la question de l'évaluation de la qualité d'un modèle généré n'est pas véritablement à l'ordre du jour, sauf dans le chapitre sur l'apprentissage de fonctions d'ordonnancement.

La mise en page est soignée et aide généralement la lecture. Certaines parties du texte sont encadrées, notamment des sections qui mettent en évidence des notions centrales ou qui récapitulent le chapitre. Cependant, les mêmes artéfacts esthétiques sont employés pour des preuves : sont-elles alors mises en avant par rapport au reste du texte ? Ce n'est pas clair.

Globalement, l'ouvrage est complet et axé sur la théorie, difficile d'accès pour des personnes n'ayant pas eu une formation universitaire poussée en mathématiques. Celui qui souhaite se mettre à l'apprentissage automatique dans la pratique en retirera néanmoins quelques avantages, principalement pour la désacralisation des méthodes employées.




 Commenter Signaler un problème

Avatar de dourouc05 dourouc05 - Responsable Qt & Livres https://www.developpez.com
le 09/07/2016 à 15:40
Apprentissage machine et intelligence artificielle

L'apprentissage machine est l'un des domaines phares de l'intelligence artificielle. Il concerne l'étude et le développement de modèles quantitatifs permettant à un ordinateur d'accomplir des tâches sans qu'il soit explicitement programmé à les faire. Apprendre dans ce contexte revient à reconnaître des formes complexes et à prendre des décisions intelligentes. Compte tenu de toutes les entrées existantes, la complexité pour y arriver réside dans le fait que l'ensemble des décisions possibles est généralement très difficile à énumérer. Les algorithmes en apprentissage machine ont par conséquent été conçus dans le but d'acquérir de la connaissance sur le problème à traiter en se basant sur un ensemble de données limitées issues de ce problème.

Un ouvrage de référence

Cet ouvrage présente les fondements scientifiques de la théorie de l'apprentissage supervisé, les algorithmes les plus répandus développés suivant ce domaine ainsi que les deux cadres de l'apprentissage semi-supervisé et de l'ordonnancement, à un niveau accessible aux étudiants de master et aux élèves ingénieurs. Nous avons eu ici le souci de fournir un exposé cohérent reliant la théorie aux algorithmes développés dans cette sphère. Mais cette étude ne se limite pas à présenter ces fondements, vous trouverez ainsi quelques programmes des algorithmes classiques proposés dans ce manuscrit, écrits en langage C (langage à la fois simple et populaire), et à destination des lecteurs qui cherchent à connaître le fonctionnement de ces modèles désignés parfois comme des boîtes noires.

À qui s'adresse ce livre ?

  • Aux élèves ingénieurs, étudiants de master et doctorants en mathématiques appliquées, algorithmique, recherche opérationnelle, gestion de production, aide à la décision.
  • Aux ingénieurs, enseignants-chercheurs, informaticiens, industriels, économistes et décideurs ayant à résoudre des problèmes de classification, de partitionnement et d'ordonnancement à large échelle.

Apprentissage machine
De la théorie à la pratique - Concepts fondamentaux en Machine Learning

 
couverture du livre Recherche d'information - Applications, modèles et algorithmes

Note 4.75 drapeau
Détails du livre
Sommaire
Critiques (2)
0 commentaire
 
 

Recherche d'information - Applications, modèles et algorithmes

de
Public visé : Intermédiaire

Résumé de l'éditeur

Le premier ouvrage francophone sur les algorithmes qui sous-tendent les technologies de big data et les moteurs de recherche !

Depuis quelques années, de nouveaux modèles et algorithmes sont mis au point pour traiter des données de plus en plus volumineuses et diverses. Cet ouvrage présente les fondements scientifiques des tâches les plus répandues en recherche d'information (RI), tâches également liées au data mining, au décisionnel et plus généralement à l'exploitation de big data.

Il propose un exposé cohérent des algorithmes classiques développés dans ce domaine, abordable à des lecteurs qui cherchent à connaître le mécanisme des outils quotidiens d'Internet.

Le lecteur approfondira les concepts d'indexation, de compression, de recherche sur le Web, de classification et de catégorisation, et pourra prolonger cette étude avec les exercices corrigés proposés en fin de chapitre.

Ce livre s'adresse tant aux chercheurs et ingénieurs qui travaillent dans le domaine de l'accès à l'information et employés de PME qui utilisent en profondeur les outils du webmarketing, qu'aux étudiants de Licence, Master, doctorants ou en écoles d'ingénieurs, qui souhaitent un ouvrage de référence sur la recherche d'information.

Édition : Eyrolles - 234 pages, 1re édition, 12 avril 2013

ISBN10 : 2212135327 - ISBN13 : 9782212135329

Commandez sur www.amazon.fr :

37.05 € TTC (prix éditeur 39.00 € TTC) livraison gratuite !
  • Représentation et indexation
  • Recherche d'information
  • Recherche sur le Web
  • Catégorisation de documents
  • Partitionnement de documents
  • Recherche de thèmes latents
  • Considérations pratiques
Critique du livre par la rédaction prenom nom le 7 novembre 2013
Je viens de lire « Recherche d'information - Applications, modèles et algorithmes » de Massih-Reza Amini et de Éric Gaussier.
Ce petit livre traite des algorithmes qui sous-tendent les technologies de big data et les moteurs de recherche. Il fait partie de la collection Algorithmes de l'éditeur Eyrolles et comme tous les ouvrages de cette collection, il est destiné à un public scientifique (chercheurs, ingénieurs).
Dans ce genre d'ouvrage, ce que j'apprécie, c'est le formalisme utilisé. Je ne parle pas seulement des formules mathématiques, mais aussi des définitions de concepts tels qu'indexation, représentation et compression, recherche d'information, classification et partitionnement de documents.
Le livre décrit la chaîne complète d'indexation qui permet de construire l'ensemble du vocabulaire à partir d'une collection de documents ainsi que les algorithmes les plus répandus pour la construction de l'index inversé. Il présente les avantages et inconvénients des modèles de recherche d'information les plus courants : booléen, vectoriel et probabiliste. J'ai bien aimé l'approche des auteurs consistant à expliquer les motivations à l'origine de la conception des nouveaux modèles.
J'ai également trouvé intéressant le chapitre dédié à la recherche sur le Web et les pages en fin d'ouvrage relatives aux logiciels libres de recherche d'information, de catégorisation et de partitionnement.
En conclusion, c'est un livre que je recommande à ceux qui sont intéressés par le sujet s'ils font partie du public visé.
Critique du livre par la rédaction stoyak le 21 mai 2014
Je viens de finir la lecture de "Recherche d'information - Applications, modèles et algorithmes" de Massih-Reza Amini et Eric Gaussier.
Les auteurs proposent d'expliquer les fondements scientifiques de la recherche d'information et détaillent les algorithmes classiques sur lesquels sont basés les moteurs de recherche que nous utilisons chaque jour !
L'ensemble des concepts sont présentés (indexation, représentation et compression, classification et positionnement).

Un livre très intéressant mais à réserver à un public averti, même si les auteurs cherchent à rendre le sujet abordable ! Il comprend de nombreuses formules mathématiques (difficile pour ceux qui n'ont plus l'habitude !), de nombreux schémas et la définition très pointue de nombreux concepts. Et il est en français !
L'un des intérêts de ce livre est de proposer des exercices (corrigés !) après chaque chapitre. Cela permet au lecteur de valider ses acquis au fur et à mesure de la lecture. Par contre, il
est conseillé d'avoir "quelques" bases en statistique pour faciliter la compréhension.
Un chapitre est dédié à la recherche d'information sur le Web : il détaille le fonctionnement des robots d'indexation et le PageRank. Vous ne surferez plus bêtement !

Petit plus par rapport à d'autres livres ? Le chapitre sur les logiciels open source. Quelques uns sont décrits plus spécifiquement, en précisant le langage, la licence et le site.Vous pourrez ainsi passer à la pratique !

Pour conclure ? Un bon livre francophone pour aborder les notions fondamentales de la recherche d'information, les algorithmes de moteurs de recherche et les technologies de big data. A réserver toutefois à un public
scientifique (ingénieurs et chercheurs), aux utilisateurs des outils de Webmarketing, aux passionnés de la fouille de données... Avec des connaissances en statistique !




 Commenter Signaler un problème

Avatar de benwit benwit - Rédacteur https://www.developpez.com
le 10/11/2013 à 9:17
Bonjour,

Je viens de lire le livre : "Recherche d'information - Applications, modèles et algorithmes" de Massih-Reza Amini et Éric Gaussier.
J'ai posté une note de lecture à cette adresse http://algo.developpez.com/livres/?p...L9782212135329



Connaissez-vous ce livre ?
L'avez vous lu ?
Pensez vous le lire ?

 
couverture du livre Apprentissage artificiel

Note 4 drapeau
Détails du livre
Sommaire
Critiques (1)
7 commentaires
 
 

Apprentissage artificiel

Concepts et algorithmes

de
Public visé : Expert

Résumé de l'éditeur

Les programmes d'intelligence artificielle sont aujourd'hui capables de reconnaître des commandes vocales, d'analyser automatiquement des photos satellites, d'assister des experts pour prendre des décisions dans des environnements complexes et évolutifs (analyse de marchés financiers, diagnostics médicaux...), de fouiller d'immenses bases de données hétérogènes, telles les innombrables pages du Web... Pour réaliser ces tâches, ils sont dotés de modules d'apprentissage leur permettant d'adapter leur comportement à des situations jamais rencontrées, ou d'extraire des lois à partir de bases de données d'exemples. Ce livre présente les concepts qui sous-tendent l'apprentissage artificiel, les algorithmes qui en découlent et certaines de leurs applications. Son objectif est de décrire un ensemble d'algorithmes utiles en tentant d'établir un cadre théorique pour l'ensemble des techniques regroupées sous ce terme " d'apprentissage artificiel ". Ce livre s'adresse tant aux décideurs et aux ingénieurs qui souhaitent mettre au point des applications qu'aux étudiants de niveau Master 1 et 2 et en école d'ingénieurs, qui souhaitent un ouvrage de référence sur ce domaine clé de l'intelligence artificielle.

Édition : Eyrolles - 803 pages, 2e édition, 1er juin 2010

ISBN10 : 2212124716 - ISBN13 : 9782212124712

23 x 17 x 5 cm

Commandez sur www.amazon.fr :

52.92 € TTC (prix éditeur 55.07 € TTC) livraison gratuite !
  • Les fondements de l'apprentissage
    (list]
  • Première approche théorique de l'induction
  • Environnement méthodologique
[*]Apprentissage par exploration
  • Induction et relation d'ordre
  • Programmation logique inductive
  • Inférence grammaticale
  • Apprentissage par évolution
[*]Apprentissage par optimisation
  • Surfaces séparatrices linéaires
  • Réseaux connexionistes
  • Réseaux bayésiens
  • Modèles de Markov cachés
[*]Apprentissage par approximation et interpolation
(list][*]Classification non supervisée[*]Apprentissage par renforcement[/list][*]Annexes et bibliographie[/list]
Critique du livre par la rédaction nico-pyright(c) le 1er mai 2013
Un livre de référence mais pour un public précis.
Ouch ! C'est la première impression quand on tient le livre entre les mains. Beaucoup de pages (plus de 800) et puis il pèse son poids. Ensuite, si on feuillette un peu le livre, on se rend compte qu'il y a beaucoup de texte, mais également beaucoup de formules mathématiques.
En effet, ce livre se veut être une référence dans le domaine de l'apprentissage artificiel, mais il est en fait plutôt dédié aux étudiants qui cherchent un complément de cours ou aux chercheurs qui ont besoin d'une bonne compilation de tout ce qui existe dans le domaine. Par contre, il est inaccessible aux professionnels qui cherchent un peu à savoir comment tout cela fonctionne.
L'approche est très théorique, voire très (trop ?) mathématique. En revanche, elle a l'avantage de bien poser toutes les bases et d'ouvrir la réflexion sur l'apprentissage à un niveau presque philosophique.
Cependant, il y a tout dedans. Ecrit par des pointures du domaine, cet ouvrage constitue une bible à lire et à relire. Les exemples sont assez compréhensibles et appliqués à des domaines proches de nous.
On regrettera le manque d'applications pratiques et quelques codes sources auraient été les bienvenus.




 Commenter Signaler un problème

Avatar de bertry bertry - Membre éclairé https://www.developpez.com
le 06/07/2013 à 18:19
Vous trouverez ci-joint une première version de l'errata de ce livre
Avatar de nico-pyright(c) nico-pyright(c) - Rédacteur https://www.developpez.com
le 01/07/2013 à 11:04
Bonjour,

j'ai lu l'ouvrage Apprentissage artificiel - Concepts et algorithmes



Résumé de l'éditeur :
Les programmes d'intelligence artificielle sont aujourd'hui capables de reconnaître des commandes vocales, d'analyser automatiquement des photos satellites, d'assister des experts pour prendre des décisions dans des environnements complexes et évolutifs (analyse de marchés financiers, diagnostics médicaux...), de fouiller d'immenses bases de données hétérogènes, telles les innombrables pages du Web... Pour réaliser ces tâches, ils sont dotés de modules d'apprentissage leur permettant d'adapter leur comportement à des situations jamais rencontrées, ou d'extraire des lois à partir de bases de données d'exemples. Ce livre présente les concepts qui sous-tendent l'apprentissage artificiel, les algorithmes qui en découlent et certaines de leurs applications. Son objectif est de décrire un ensemble d'algorithmes utiles en tentant d'établir un cadre théorique pour l'ensemble des techniques regroupées sous ce terme " d'apprentissage artificiel ". Ce livre s'adresse tant aux décideurs et aux ingénieurs qui souhaitent mettre au point des applications qu'aux étudiants de niveau Master 1 et 2 et en école d'ingénieurs, qui souhaitent un ouvrage de référence sur ce domaine clé de l'intelligence artificielle.
Ma critique :
Un livre de référence mais pour un public précis.
Ouch ! C'est la première impression quand on tient le livre entre les mains. Beaucoup de pages (plus de 800) et puis il pèse son poids. Ensuite, si on feuillette un peu le livre, on se rend compte qu'il y a beaucoup de texte, mais également beaucoup de formules mathématiques.
En effet, ce livre se veut être une référence dans le domaine de l'apprentissage artificiel, mais il est en fait plutôt dédié aux étudiants qui cherchent un complément de cours ou aux chercheurs qui ont besoin d'une bonne compilation de tout ce qui existe dans le domaine. Par contre, il est inaccessible aux professionnels qui cherchent un peu à savoir comment tout cela fonctionne.
L'approche est très théorique, voire très (trop ?) mathématique. En revanche, elle a l'avantage de bien poser toutes les bases et d'ouvrir la réflexion sur l'apprentissage à un niveau presque philosophique.
Cependant, il y a tout dedans. Ecrit par des pointures du domaine, cet ouvrage constitue une bible à lire et à relire. Les exemples sont assez compréhensibles et appliqués à des domaines proches de nous.
On regrettera le manque d'applications pratiques et quelques codes sources auraient été les bienvenus.
L'avez-vous lu? Comptez-vous le lire bientôt?

Quel est votre avis?
Avatar de bertry bertry - Membre éclairé https://www.developpez.com
le 01/07/2013 à 17:36
Salut à tous,

J'ai eu l'occasion d'utiliser cet ouvrage, il est en effet très théorique et totalement inadapté pour une application pratique immédiate. Cet ouvrage est plus destiné à compléter un cours ou des connaissances par des bases solides qu'a un apprentissage à partir de zéro.

Sur un ouvrage de référence tel que celui-ci, une chose m'a beaucoup dérangé (J'en ai déjà parlé ici et je recommence):
J'ai utilisé en particulier (dans la deuxième édition) le chapitre 12: L'apprentissage de modèle de Markov cachés; j'y ai trouvé de nombreuses erreurs:
  • Dans les formules mathématiques (fautes de frappe, disparition de caractères ou de fin d'équation, et parfois tout ça dans une même ligne )
  • Dans les algorithmes (la fin de certaines lignes est absente, des valeurs de fin de boucle sont fausses)
  • Dans les valeurs numériques des exemples (De nombreux résultats sont totalement faux!!)

Pire encore: J'ai également eu l'occasion de consulter la première édition de ce livre. Non seulement la plupart des erreurs que j'ai trouvé dans la deuxième édition étaient déjà présentes dans la première édition, mais des erreurs supplémentaires sont apparues dans la deuxième édition!!!
J'avais cherché à l'époque un moyen de faire remonter l'info à l'éditeur, mais je n'y était pas parvenu...

Les autres chapitres que j'ai pu utiliser semblaient corrects.

 
couverture du livre Réseaux de neurones

Note 4 drapeau
Détails du livre
Sommaire
Critiques (1)
 
 

Réseaux de neurones

Méthodologie et applications

de
Public visé : Intermédiaire

Résumé de l'éditeur

Les réseaux de neurones constituent aujourd'hui une technique de traitement de données bien comprise et maîtrisée, qui devrait faire partie de la boîte à outils de tout ingénieur soucieux de tirer le maximum d'informations pertinentes des données dont il dispose : effectuer des prévisions, de la fouille de données, élaborer des modèles, reconnaître des formes ou des signaux, etc.

joignant fondements théoriques et applications pratiques dans un langage accessible, cet ouvrage permettra aux décideurs, aux ingénieurs et aux chercheurs de bénéficier de méthodologies claires pour mettre en oeuvre les réseaux de neurones dans des applications industrielles, financières ou bancaires, dont de nombreux exemples sont présentés. Cette deuxième édition mise à jour et enrichie des derniers développements dans le domaine est accompagnée d'un CD-Rom contenant des d'exemples de modèles en C avec leurs données et d'un outil d'apprentissage dédié, Neuro One (version d'évaluation).

A qui s'adresse ce livre ? - Aux ingénieurs, informaticiens, industriels et décideurs ayant à résoudre des problèmes de modélisation, de reconnaissance, de prévision, de commande, etc. - Aux étudiants et élèves ingénieurs des disciplines scientifiques et économiques, et à leurs enseignants.

Édition : Eyrolles - 417 pages, 2e édition, 1er avril 2004

ISBN10 : 2212114648 - ISBN13 : 9782212114645

Broché, dimensions : 17 x 3 x 23

Commandez sur www.amazon.fr :

49.04 € TTC (prix éditeur 52.00 € TTC)
  • Les réseau de neurones : pourquoi et pour quoi faire ?
  • Modélisation à l'aide de réseaux de neurones : principes et méthodologie de conception de modèles
  • Compléments de méthodologie pour la modélisation : réduction de dimension et ré-échantillonnage
  • Identification "neuronale" de systèmes dynamiques commandés et réseaux bouclés (récurrents)
  • Apprentissage d'une commande en boucle fermée
  • La discrimination
  • Cartes auto-organisatrices et classification automatique
  • Réseaux de neurones sans apprentissage pour l'optimisation
  • Bibliographie commentée
  • Outils pour les réseaux de neurones (CDROM)
Critique du livre par la rédaction Pierre SCHWARTZ le 1er novembre 2007
Après une rapide introduction au concept de réseaux de neurones, le lecteur est plongé dans une description d'un grand nombre de types de réseaux de neurones différents avec pour chacun d'eux leurs propriétés et des domaines d'utilisation. Toutes ces présentations sont étroitement liées à des explications statistiques permettant de préparer et de traiter de manière optimale les données à manipuler dans le réseau.
Cet ouvrage traite des réseaux de neurones par un grand nombre d'aspects : algorithmique, statistique, algébrique, avec également des exemples d'applications aussi divers que variés pour notre plus grand bonheur. Il y en a pour tous les goûts.
Le lecteur pourra néanmoins être dérouté par l'excès de formalisme mathématique au détriment d'explications en langage naturel, c'est la raison pour laquelle il faut un solide bagage théorique/statistique/mathématique avant d'attaquer cet ouvrage. On appréciera au plus haut point les explications multiples pour un même concept et la mise en page très claire, mettant en évidence des encadrés "A retenir", "rappel" ou encore "définition", ainsi que des schémas nombreux et clairs. Bref, un ouvrage très utile mais d'une approche pas toujours évidente.


couverture du livre Réseaux bayesiens

Note 3.5 drapeau
Détails du livre
Sommaire
Critiques (1)
 
 

Réseaux bayesiens

de
Public visé : Expert

Résumé de l'éditeur

Modèles de connaissances pour l'aide à la décision, le diagnostic ou le contrôle de systèmes complexes. Technique mathématique combinant statistiques et intelligence artificielle, les réseaux bayésiens permettent d'analyser de grandes quantités de données pour en extraire des connaissances utiles à la prise de décision, contrôler ou prévoir le comportement d'un système, diagnostiquer les causes d'un phénomène, etc. Les réseaux bayésiens sont utilisés dans de nombreux domaines : santé (diagnostic, localisation de gènes), industrie (contrôle d'automates ou de robots), informatique et réseaux (agents intelligents), marketing (data mining, gestion de la relation client), banque et finances (scoring, analyse financière), management (aide à la décision, knowledge management, gestion du risque), etc. Fondements théoriques, méthodologie de mise en oeuvre, exemples d'application et panorama des outils.

Après une première partie de présentation "intuitive" des réseaux bayésiens accompagnée d'exercices, la deuxième partie du livre en expose les fondements théoriques, avec une étude détaillée des algorithmes les plus importants.

Résolument pratique, la troisième partie de l'ouvrage propose une méthodologie de mise en oeuvre, un panorama des domaines d'application, trois études de cas détaillées, ainsi qu'une présentation des principaux logiciels de modélisation de réseaux bayésiens (Bayes Net Toolbox, BayesiaLab, Hugin et Netica).

À qui s'adresse l'ouvrage ? Aux ingénieurs, informaticiens, industriels, biologistes, économistes confrontés à des problèmes d'analyse de données, d'aide a la décision, de gestion des connaissances, de diagnostic ou de contrôle de systèmes. Aux étudiants en mathématiques appliquées, algorithmique, économie, recherche opérationnelle, gestion de production, automatique.

Édition : Eyrolles - 298 pages, 2e édition, 1er avril 2004

ISBN10 : 2212111371 - ISBN13 : 9782212111378

Commandez sur www.amazon.fr :

37.05 € TTC (prix éditeur 39.00 € TTC)
  • INTRODUCTION AUX RESEAUX BAYESIENS
    • Approche intuitive
    • Introduction aux algorithmes : inférence, apprentissage
    • Exercices corrigés
  • CADRE THEORIQUE ET PRESENTATION DETAILLEE DES ALGORITHMES
    • Modèles
    • Propagations
    • Apprentissage
  • METHODOLOGIE DE MISE EN OEUVRE ET ETUDES DE CAS
    (list]
  • Mise en oeuvre des réseaux bayésiens
  • Panorama des applications
  • Étude de cas n° 1 : gestion des risques (EDF)
  • Étude de cas n° 2 : modélisation d'un réseau électrique (EDF)
  • Étude de cas n° 3 : application de scoring pour la vente de crédit en ligne
[/list]
Critique du livre par la rédaction Matthieu Brucher le 11 juin 2008
Comme on pouvait s'y attendre devant ce sujet, le livre est tout de même difficile à comprendre.
Heureusement, les auteurs ont commencé par une petite partie introductive abordable - même s'il faudra chercher dans les annexes les notations pour comprendre les équations, moins une étoile pour cela - suffisamment simple pour que toute personne ayant une notion de probabilité puisse comprendre.
Attention, que ceux qui ne connaissent rien des probabilités et de la règle de Bayes passent leur chemin. Oui, les réseaux bayesiens permettent de résoudre beaucoup de problèmes, mais ce livre ne vous apprendra pas les bases indispensables de la statistique et des probabilités, ce n'est pas non plus son objectif.
La deuxième partie est la partie complexe, celle qui énonce les théorèmes et les algorithmes. A la première lecture, on ne comprend pas tout, c'est normal, il faut se replonger plusieurs fois dedans pour voir vraiment ce qui se passe, pour pouvoir comprendre en détail les algorithmes.
La dernière partie permet de ce faire une idée de ce qu'on peut réaliser avec des réseaux bayesiens. La pratique est en effet indispensable pour comprendre ce vaste sujet. En revanche, aucun code n'est fourni, on est invité à regarder ce que le commerce propose de libre ou de payant, on reste donc un peu sur sa faim à ce niveau, mais n'oublions pas que ce sujet est complexe, et que les programmes sur les réseaux bayesiens sont relativement récents, donc fournir un code source pour ces objets n'est pas chose facile.


couverture du livre Apprentissage statistique

Note 4.5 drapeau CD-Rom
Détails du livre
Sommaire
Critiques (1)
 
 

Apprentissage statistique

Réseaux de neurones - Cartes topologiques - Machines à vecteurs supports

de

Résumé de l'éditeur

L'apprentissage statistique permet la mise au point de modèles de données et de processus lorsque la formalisation de règles explicites serait impossible : reconnaissance de formes ou de signaux, prévision, fouille de données, rise de décision en environnement complexe et évolutif. Ses applications sont multiles dans le monde de la production industrielle (robotique, maintenance préventive, développement de capteurs virtuels, planification d'expériences, aide à la conception de produits), dans le domaine de la biologie et de la santé (aide au diagnostic, aide à la découverte de médicaments, bio-informatique), en télécommunications, en marketing et finance, et dans bien d'autres domaines.

Sans omettre de rappeler les fondements théoriques de l'apprentissage statistique, cet ouvrage offre de solides bases méthodologiques à tout ingénieur ou chercheur soucieux d'exploiter ses données. Il en présente les algorithmes les plus couramment utilisées - réseaux de neurones, cartes topologiques, machines à vecteurs supports, modèles de Markov cachés - à l'aide d'exemples et d'études de cas industriels, financiers ou bancaires.

Édition : Eyrolles - 449 pages, , 1er septembre 2008

ISBN10 : 2212122292 - ISBN13 : 9782212122299

Commandez sur www.amazon.fr :

52.00 € TTC (prix éditeur 52.00 € TTC)
  • L'apprentissage statistique : pourquoi, comment ?
  • Les réseaux de neurones
  • Compléments de méthodologie pour la modélisation : réduction de dimension et ré-échantillonnage
  • Identification neuronale de systèmes dynamiques commandés et réseaux bouclés (récurrents)
  • Apprentissage d'une commande en boucle fermée
  • La discrimination
  • Cartes auto-organisatrices et classification automatique
  • Outils pour les réseaux de neurones et contenu du CD-ROM
Critique du livre par la rédaction Alp le 23 octobre 2008
Ce livre présente très bien la théorie de l'apprentissage statistique et nous fait réellement rendre conscience de son importance dans le monde actuel. En effet, un premier chapitre aborde les généralités sur l'apprentissage statistique : pourquoi, comment, etc. Ensuite, un deuxième chapitre se consacre entièrement aux réseaux de neurones, et la pari est gagné. On est plongé dans l'apprentissage statistique et la théorie des réseaux de neurones est expliquée mais également accompagnée de nombreux exemples, afin de ne pas perdre le lecteur dans les explications, de la reconnaissance de formes à la fouille de données en passant par la robotique et la prédiction de température notamment. Le chapitre suivant lui traite de réduction de dimension et de ré-échantillonnage, où comment mieux préparer les entrées nos outils de prédiction, apprentissage. On y voit notamment l'analyse en composantes principales (ACP), curvilignes (ACC). Puis l'on voit des réseaux de neurones plus complexes, les réseaux de neurones bouclés (ou "récurrents"), la discrimination, les cartes auto-organistratices et les machines à vecteurs supports.

J'ai énormément apprécié ce livre et en attendais beaucoup, et il m'a satisfait sur tous les points sauf un : les machines à vecteurs supports. En effet, je m'attendais à bien plus d'explications et de pages sur le sujet, mais c'est la seule chose qui m'a déçue avec ce livre. Si vous êtes intéressés par l'apprentissage statistique ou par n'importe laquelle de ses applications, alors ce livre et pour vous, satisfaisant à la fois les fous de théories comme les practiciens. Attention toutefois, il faut un certain niveau en mathématiques statistiques pour aborder sereinement ce livre.